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• NASA Ames Aeromechanics Branch Tasks for MSH
– Explore aircraft sizing and packaging for MSH
– Define baseline rotor designs for future helicopters on Mars

• Team
– NASA Ames Research Center

• Wayne Johnson, Shannah Withrow-Maser, Larry Young, Carlos Malpica, Witold Koning
• Winnie Kuang, Mireille Fehler, Allysa Tuano, Athena Chan, Malorie Travis, Siobhan Whittle, 

Noah Del Coro, Kaitlin O'Dell, Hima Patel, Cuyler Dull, Asa Palmer

– Alfred Gessow Rotorcraft Center, University of Maryland
• Prof. Anubhav Datta
• Lex Chi, Ravi Lumba, Daniel Escobar

• Documentation of work
– NASA TP 2020-220485, “Mars Science Helicopter Conceptual Design” 

to be published March 2020
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Mars Science Helicopter — NASA Ames Activities



• Initial Designs (March 2019)
– Useful (but not too hard) mission, packaging constraint => Coaxial and Hexacopter
– Sizing with low Re airfoils, weights calibrated to MH, JPL battery technology forecast
– Structural design and flight dynamics => feasible aircraft configurations

• Design Refinements
– Packaging

• MSH in Viking aeroshell; small MSH hexacopter in Pathfinder lander
– Rotor blade aerodynamic optimization

• Improved rotor performance, higher Mach numbers feasible
• Structural analysis: Inboard thickness requirement, rotor weight estimate

– Coaxial and hexacopter design update
• Based on improved performance with optimized airfoils
• Double range and hover time for same gross weight

– Designs for representative Mars sites
• Demonstrate robustness of Mars Science Helicopter concept

– Exploration of limits of design assumptions
– Potential capability of Mars Science Helicopter

• Including application of improved design features to MH-size helicopter
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NASA Ames Aeromechanics Branch Tasks for MSH



• Initial design mission: useful science but not too hard
– Payload = 2.02 kg
– Jezero Crater in the spring: 

0.015 kg/m3, –50oC

• Mars helicopter sizing spreadsheet (calibrated to MH)
– Packaging: constrained to 2.5m diameter

• Two configurations: weight about 20 kg
– Coaxial helicopter (radius = 1.25 m)

• Legacy (MH) configuration
• Concern: flight dynamics

– Hexacopter (radius = 0.64 m)
• Good performance (more disk area), 

operate with failed motor, flight dynamics
• Concern: weight of airframe
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Initial Sizing of MSH
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• NDARC (NASA Design and Analysis of Rotorcraft)
– Detailed performance models (rotor, battery, motor), detailed 

mission analysis
– Rotor: Circular arc airfoils for low Reynolds number of Mars

• Better airfoil L/D => higher efficiency, lower power
• Better stall => higher maximum thrust

– Weight: calibrated to MH
– Battery: JPL technology forecast
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NDARC Sizing of MSH



• Design CT/𝝈 = 0.11 (MH + 10% for airfoil)
• Hover tip Mach = 0.7 (MH experience, airfoil calculations)
• Flight speed = 30 m/s (min power, assume enabled by nav system)

• Designs:
– Coaxial helicopter: rotor radius 1.25 m, weight 18.0 kg, power 3.2 

kW, battery 128 Ah, rotor solidity = 0.310
– Hexacopter: rotor radius 0.64 m, weight 17.7 kg, power 3.3 kW, 

battery 113 Ah, rotor solidity = 0.193
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Design Variables



• Preliminary blade structural analysis (University of Maryland)
– Design to target flap frequency and blade weight

• Flight dynamics and control (Grip and Malpica)
– Control bandwidth limited by low damped flap mode of blade

• Regressive flap mode for coaxial (cyclic control)
• Coning flap mode for hexacopter (collective or rpm control)

• Feasible aircraft configuration for Mars Science Helicopter: 
Hexacopter, with rotational fold

– High-gain control possible with either collective or rpm control
• Difficult to design larger coaxial helicopter for Mars that will 

meet control requirements 
– Coaxial configuration would be feasible if have sufficient mechanical 

or structural damping of flap mode
– Or if can design lightweight blades with very high flap stiffness
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Structural Design and Flight Dynamics



• Entry, descent, and landing (EDL) system needed to get to surface of Mars
– Initial sizing based on 2.5 m diameter constraint
– New aeroshell and lander could be developed for MSH
– Likely project efficiencies if existing design can be used 

• Hexacopter (R=0.64 m) with rotating fold fits in Pathfinder aeroshell, but not in 
Pathfinder petal lander

• Developed new airbag-based and propulsion-based designs for Viking aeroshell
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Packaging for Mars

Airbag-based Lander Design Propulsion-based Lander Design  

Viking
1976, Diameter 3.505m

Pathfinder
1997, Diameter 2.65 m

Mars Science Lab
2012, Diameter 4.5 m



• Designed two hexacopters with smaller rotors, to fit in Pathfinder 
tetrahedral petal lander

– Higher weight, power, and energy; less growth capability

• Fold arms: Radius=0.50 m
– 19.1 kg, 3.5 kW
– rotor solidity=0.25

• Also scissor blades: Radius=0.58 m
– 18.0 kg, 2.9 kW
– rotor solidity=0.176

• Still volume in lander for other payload or science applications
• Larger aeroshells allow larger rotorcraft
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Packaging for Mars



• Optimized airfoil shapes for unique environment 
of a second-generation Mars rotorcraft

– Double edged plate best outboard
– Thickness-constrained diamond inboard

• Optimized planform and twist

• Designing thicker airfoil sections also
– 5% thick outboard, 15% thick inboard
– For more structural design options

• Initial structural analysis and free vibration mode 
calculation (University of Maryland)

– For optimized blade aerodynamic shapes
– Confirmed can meet frequency and weight targets for 

hexacopter blade, with acceptable stress/strain levels
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Rotor Blade Aerodynamic Optimization
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• Optimized airfoils
– Hover: increased peak figure of 

merit, lower power, better stall 
behavior

– Forward flight: lower power at fixed 
flight speed

• No evidence of drag divergence (to 
Mat = 0.95)

• Conclude can increase design 
CT/𝝈, increase tip speed
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Single Rotor Performance
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• Model and parameter changes
– Rotor performance model based on optimized aerodynamics

• Lower power in hover and forward flight
– Increased design blade loading to CT/𝝈 = 0.115
– Increased tip Mach number to Mtip = 0.80

• Reduces blade area => reduced structural weight => 
can increase battery weight => more mission capability

• Updated designs
– Coaxial helicopter: 19.3 kg, 3.6 kW, 225 Ah, rotor solidity=0.244
– Hexacopter: 17.7 kg, 2.8 kW, 172 Ah, rotor solidity=0.142
– With greater operational capability: 2 km, 4.5 min hover

• These updated designs established MSH feasibility
• Next explored possible capabilities of MSH

– Beyond the initial atmosphere, payload, and mission requirements
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Mars Science Helicopter Design Update



• JPL identified three representative Mars landing sites (examples, not site 
recommendations)

– Atmospheric conditions depend on location (latitude, longitude, elevation) 
and time of day & year

– Weight and performance depend on atmospheric density and payload

• Example: Palikir Crater
– Payload 2.1 kg
– Aircraft 21.0 kg, 

3.8 kW, 236 Ah, 
rotor solidity=0.198

• Results demonstrated robustness of hexacopter concept
– Substantial capability even with updated design (2 kg payload, density = 

0.015 kg/m3) 
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Designs for Representative Mars Sites
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• Need enough confidence in design assumptions to fix aircraft size and 
rotor radius, and chose aeroshell/lander

– Anticipating growth of weight and power that are encountered in all aircraft 
development programs

– Anticipating growth in requirements, especially payload weight
• Project manager and designer must recognize when a helicopter 

designed for constrained size is near limits of technical feasibility
– Limit indicated by accelerating growth of aircraft size as function of mission 

parameters or design uncertainty
– Examined impact of mission: payload, range, hover time
– Examined impact of uncertainty: contingency weight; fuselage, motor, or 

control weight

• Conclusion: feasible designs exist that are more capable (range and 
hover time), and also more conservative (larger contingency weight)

– Gross weight ~30 kg, rotor solidity = 0.25
• Or larger aeroshell and lander, enabling larger rotors and aircraft
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Exploration of Limits of Design Assumptions



15

Potential Capability of Mars Science Helicopter
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Potential Capability of Mars Science Helicopter
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MH demo Advanced MHS

design CT/𝝈 0.10 0.115

design Mtip 0.7 0.8

cruise speed m/sec 2 30

payload kg 0 1.3

range km 0.18 km OR 2 km AND

hover time min 1.5 min 2 min

rotor radius m 0.605 0.605

gross weight kg 1.8 4.6

solidity 0.148 0.248

total power kW 0.36 0.88

battery Ah 12 46
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Advanced Mars Helicopter Scout
Apply improved design features to 

helicopter same size and configuration as 
Mars Helicopter demonstrator

coaxial helicopter, radius = 0.605 m
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